서포트 벡터 머신(Support Vector Machine, SVM)은 분류(Classification)와 회귀(Regression) 분석을 위한 지도학습 알고리즘 중 하나입니다. SVM은 데이터를 분류하는 최적의 결정 경계(Decision Boundary)를 찾는 데 중점을 둡니다. 이 알고리즘은 훈련 데이터의 클래스를 나누는 최적의 초평면(Hyperplane)을 찾는 것으로서, 이 초평면을 기반으로 새로운 데이터를 분류합니다. 1. 서포트 벡터(Support Vectors): 서포트 벡터는 클래스 간 경계에 가까이 위치한 훈련 데이터 포인트들을 의미합니다. SVM은 이 서포트 벡터들을 기반으로 결정 경계를 찾습니다. 즉, 결정 경계는 서포트 벡터들과의 거리를 최대화하면서 찾게 됩니다. 2. 마진(Ma..