홀드아웃 검증, K-Fold 교차 검증, 부트스트랩 재표본 추출은 모두 머신 러닝 및 통계 모델의 성능을 평가하고 일반화하기 위한 효과적인 방법론입니다. 이러한 방법들은 데이터의 일부를 훈련(training)에 사용하고 나머지를 검증(validation)에 사용하여 모델의 성능을 평가합니다. 아래에서 각 방법에 대해 자세히 살펴보겠습니다. 1. 홀드아웃 검증 (Holdout Validation): 홀드아웃 검증은 데이터를 훈련 세트(training set)와 검증 세트(validation set)로 나누어 모델을 평가하는 간단한 방법입니다. 일반적으로 전체 데이터의 일부(예: 70-80%)를 훈련에 사용하고 나머지를 검증에 사용합니다. 장점: 구현이 간단하고 빠르게 수행할 수 있습니다. 대용량 데이터셋에..