자기 조직화 지도(Self-Organizing Map, SOM)는 비지도 학습의 일종으로, 고차원 데이터를 저차원으로 투영하여 시각화하는 데 사용됩니다. SOM은 신경망 구조를 기반으로 하며, 데이터의 비선형 특성을 보존하면서 데이터를 클러스터링하고 시각화하는 데 유용합니다. 아래에서 SOM의 작동 원리와 주요 특징을 자세히 설명하겠습니다. 1. SOM의 작동 원리: SOM은 그리드 형태의 뉴런(neuron) 집합으로 구성된 인공 신경망입니다. 입력 데이터는 이 그리드에 매핑되고, 그리드의 각 뉴런은 가중치 벡터를 가지고 있습니다. SOM은 두 단계로 작동합니다. (1) 경쟁 학습 (Competitive Learning): 입력 데이터는 가까운 뉴런에 의해 이길 때까지 경쟁합니다. 이는 입력 데이터와 각..